I.1 - Surname
Moravčíková
I.3 - Degrees
Assoc. Prof. Ing. PhD
I.5 - Name of the workplace
University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnologies
I.6 - Address of the workplace
Trnava, Nám. J. Herdu 577/ 2, Slovak republic
I.7 - Position
Associate Professor
I.8 - E-mail address
jana.moravcikova@ucm.sk
I.9 - Hyperlink to the entry of a person in the Register of university staff
https://www.portalvs.sk/regzam/detail/30492
I.10 - Name of the study field in which a person works at the university
Biotechnology
I.11 - ORCID iD
https://orcid.org/0000-0003-2801-8870
II. - Higher education and further qualification growth
II.a - Name of the university or institution
Faculty of Chemical Technology, Slovak University of Technology in Bratislava
II.c - Study field and programme
food biochemistry, technology of milk and fat
II.a - Name of the university or institution
Comenius University Bratislava, Faculty of Natural Sciences
II.c - Study field and programme
15-03-09 Genetics
II.a - Name of the university or institution
Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food
II.c - Study field and programme
Agrobiotechnology
III. - Current and previous employment
III.a - Occupation-position |
III.b - Institution |
III.c - Duration |
University teacher - Professor |
University of Ss. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology |
2018-now |
Senior researcher (2007-2018), researcher (2001-2007)PhD study (1996-2001) |
Slovak Academy of Sciences, Center for Plant Biology and Biodiversity, Institute of Plant Genetics and Biotechnology |
1996-2018 |
IV. - Development of pedagogical, professional, language, digital and other skills
V. - Overview of activities within the teaching career at the university
V.1.a - Name of the profile course |
V.1.b - Study programme |
V.1.c - Degree |
V.1.d - Field of study |
Balance systems in biotechnological processes |
Biotechnology |
Bc |
Biotechnology |
Regulation and biosafety of biotechnologies |
Biotechnology |
Bc |
Biotechnology |
Basics of biotechnological processes and equipment |
Biotechnology |
Bc |
Biotechnology |
Laboratory exercise from in vitro plant systems |
Biotechnology |
Mgr |
Biotechnology |
Basics of bioengineering |
Biotechnology |
Mgr |
Biotechnology |
V.4.a - Bachelor's (first degree)
2
V.4.b - Diploma (second degree)
2
V.4.a - Bachelor's (first degree)
2
V.4.b - Diploma (second degree)
6
V.4.c - Dissertation (third degree)
3 supervisor/4 consultant
V.5.a - Name of the course |
V.5.b - Study programme |
V.5.c - Degree |
V.5.d - Field of study |
Material and energy balances in environment |
Environmental protection and restoration |
Mgr. |
7. Ecological and environmental sciences |
Nanobiotechnologies |
Biotechnology |
Mgr. |
Biotechnology |
VI. - Overview of the research/artistic/other outputs
VI.1.b - Over the last six years
16
VI.1.b - Over the last six years
16
VI.1.a - Overall
807 (WOS)
VI.1.b - Over the last six years
455 (2019-2025) (WOS)
VI.1.a - Overall
807 (WOS)
VI.1.b - Over the last six years
455 (WOS)
VI.1.b - Over the last six years
2
Poloniova Z, Jopcik M, Matusikova I, Libantova J, Moravcikova J (2015) The pollen- and embryo-specific Arabidopsis DLL promoter bears good potential for application in marker-free Cre/loxP self-excision strategy. Plant Cell Reports 34 (3):469-481. doi:10.1007/s00299-014-1726-0
Dubas E, Moravcikova J, Libantova J, Matusikova I, Benkova E, Zur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B-napus microspores and microspore-derived embryos. Protoplasma 251 (5):1077-1087. doi:10.1007/s00709-014-0616-1
Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tissue and Organ Culture 107 (2):317-323. doi:10.1007/s11240-011-9982-y
Moravcikova J, Vaculkova E, Bauer M, Libantova J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics 117 (8):1325-1334. doi:10.1007/s00122-008-0866-4
Matusikova I, Salaj J, Moravcikova J, Mlynarova L, Nap JP, Libantova J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222 (6):1020-1027. doi:10.1007/s00425-005-0047-5
Boszoradova E, Matusikova I, Libantova J, Zimova M, Moravcikova J (2019) Cre-mediated marker gene removal for production of biosafe commercial oilseed rape. Acta Physiologiae Plantarum 41 (6). doi:10.1007/s11738-019-2865-2
Zielinski K, Dubas E, Gersi Z, Krzewska M, Janas A, Nowicka A, Matusikova I, Zur I, Sakuda S, Moravcikova J (2021) beta-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Science 302. doi:10.1016/j.plantsci.2020.110700
Zielinski K, Krzewska M, Zur I, Juzon K, Kopec P, Nowicka A, Moravcikova J, Skrzypek E, Dubas E (2020) The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tissue and Organ Culture 140 (3):577-592. doi:10.1007/s11240-019-01754-9
Fischerová, L., Gemperlová, L., Cvikrová, M., Matušíková, I., Moravčíková, J., Gerši, Z., Malbeck, J., Kuderna, J., Pavlíčková, J., Motyka, V. and Eliášová, K., 2022. The humidity level matters during the desiccation of Norway spruce somatic embryos. Frontiers in Plant Science, 13, p.968982.
Švecová, M., Boszorádová, E., Matušíková, I., Gerši, Z., Nemeček, P., Bardáčová, M., Ranušová, P., Karas, M. and Moravčíková, J., 2023. Arabidopsis AtLTI30 and AtHIRD11 dehydrin genes and their contribution to cadmium tolerance in transgenic tobacco plants. Acta Physiologiae Plantarum, 45(2), p.21.
Mihalik, D., Lančaričová, A., Mrkvova, M., Kaňuková, Š., Moravčíková, J., Glasa, M., Šubr, Z., Predajňa, L., Hančinský, R., Grešíková, S. and Havrlentova, M., 2020. Diacylglycerol acetyltransferase gene isolated from Euonymus europaeus L. altered lipid metabolism in transgenic plant towards the production of acetylated triacylglycerols. Life, 10(9), p.205.
Gálusová, T., Piršelová, B., Rybanský, Ľ., Krasylenko, Y., Mészáros, P., Blehová, A., Bardáčová, M., Moravčíková, J. and Matušíková, I., 2020. Plasticity of soybean stomatal responses to arsenic and cadmium at the whole plant level. Pol. J. Environ. Stud, 29, pp.3569-3580.
Maglovski, M., Gerši, Z., Rybanský, Ľ., Bardáčová, M., Moravčíková, J., Bujdoš, M., Dobrikova, A., Apostolova, E., Kraic, J., Blehová, A. and Matušíková, I., 2019. Effects of nutrition on wheat photosynthetic pigment responses to arsenic stress. Polish Journal of Environmental Studies, 28(3), pp.1821-1829.
Durechova, D., Jopcik, M., Rajninec, M., Moravcikova, J. and Libantova, J., 2019. Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their antifungal potential. Molecular Biotechnology, 61, pp.916-928.
Karas, M, Vešelényiová, D., Boszorádová, E, Nemeček, P, Gerši, Z, Moravčíková, J (2024). Comparative Analysis of Dehydrins from Woody Plant Species. In Biomolecules : Open Access Journal, 2024, vol. 14, no. 3, art. no. 250.
Matusikova I, Salaj J, Moravcikova J, Mlynarova L, Nap JP, Libantova J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222 (6):1020-1027. doi:10.1007/s11033-010-0453-z
- Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T (2021) Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (<i>Drosera adelae</i>). Journal of Experimental Botany 72 (5):1946-1961. doi:10.1093/jxb/eraa560
- Egan PA, van der Kooy F (2013) Phytochemistry of the Carnivorous Sundew Genus Drosera (Droseraceae) - Future Perspectives and Ethnopharmacological Relevance. Chemistry & Biodiversity 10 (10):1774-1790. doi:10.1002/cbdv.201200359
- Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant <i>Nepenthes khasiana</i>. Journal of Experimental Botany 57 (11):2775-2784. doi:10.1093/jxb/erl048
- Ellison AM, Adamec L (2018) Carnivorous Plants Physiology, ecology, and evolution Preface. Carnivorous Plants: Physiology, Ecology, and Evolution.
- Fukushima K, Fang XD, Alvarez-Ponce D, Cai HM, Carretero-Paulet L, Chen C, Chang TH, Farr KM, Fujita T, Hiwatashi Y, Hoshi Y, Imai T, Kasahara M, Librado P, Mao LK, Mori H, Nishiyama T, Nozawa M, Pálfalvi G, Pollard ST, Rozas J, Sánchez-Gracia A, Sankoff D, Shibata TF, Shigenobu S, Sumikawa N, Uzawa T, Xie MY, Zheng CF, Pollock DD, Albert VA, Li SC, Hasebe M (2017) Genome of the pitcher plant <i>Cephalotus</i> reveals genetic changes associated with carnivory. Nature Ecology & Evolution 1 (3). doi:10.1038/s41559-016-0059
- Goh HH, Baharin A, Salleh FIM, Ravee R, Zakaria W, Noor NM (2020) Transcriptome-wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young <i>Nepenthes ampullaria</i> pitchers. Scientific Reports 10 (1). doi:10.1038/s41598-020-63696-z
- Holubová L, Svubová R, Slováková L, Bokor B, Krocková VC, Rencko J, Uhrin F, Medvecká V, Zahoranová A, Gálová E (2021) Cold Atmospheric Pressure Plasma Treatment of Maize Grains-Induction of Growth, Enzyme Activities and Heat Shock Proteins. International Journal of Molecular Sciences 22 (16). doi:10.3390/ijms22168509
- Kocáb O, Jaksová J, Novák O, Petrík I, Lenobel R, Chamrád I, Pavlovic A (2020) Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort <i>Pinguicula</i> x <i>Tina</i>. Journal of Experimental Botany 71 (12):3749-3758. doi:10.1093/jxb/eraa159
- Kostoláni D, Yemeli GBN, Svubová R, Kyzek S, Machala Z (2021) Physiological Responses of Young Pea and Barley Seedlings to Plasma-Activated Water. Plants-Basel 10 (8). doi:10.3390/plants10081750
- Krausko M, Perutka Z, Sebela M, Samajová O, Samaj J, Novák O, Pavlovic A (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant <i>Drosera capensis</i>. New Phytologist 213 (4):1818-1835. doi:10.1111/nph.14352
Moravcikova J, Vaculkova E, Bauer M, Libantova J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics 117 (8):1325-1334. doi:10.1007/s00122-008-0866-4
- Dalla Costa L, Piazza S, Campa M, Flachowsky H, Hanke MV, Malnoy M (2016) Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tissue and Organ Culture 124 (3):471-481. doi:10.1007/s11240-015-0907-z
- Éva C, Teglás F, Zelenyánszki H, Tamás C, Juhász A, Meszáros K, Tamás L (2018) Cold inducible promoter driven Cre-<i>lox</i> system proved to be highly efficient for marker gene excision in transgenic barley. Journal of Biotechnology 265:15-24. doi:10.1016/j.jbiotec.2017.10.016
- Fei XW, Huang XD, Li ZJ, Li XH, He CH, Xiao S, Li YJ, Zhang XX, Deng XD (2023) Effect of marker-free transgenic <i>Chlamydomonas </i>on the control of <i>Aedes</i> mosquito population and on plankton. Parasites & Vectors 16 (1). doi:10.1186/s13071-022-05647-3
- Hoenicka H, Lehnhardt D, Nunna S, Reinhardt R, Jeltsch A, Briones V, Fladung M (2016) Level of tissue differentiation influences the activation of a heat-inducible flower-specific system for genetic containment in poplar (<i>Populus tremula</i> L.). Plant Cell Reports 35 (2):369-384. doi:10.1007/s00299-015-1890-x
- Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM (2023) A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomedicine & Pharmacotherapy 165. doi:10.1016/j.biopha.2023.115045
- Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/<i>lox</i> system controlled by an embryo specific promoter. Plant Molecular Biology 83 (1-2):143-152. doi:10.1007/s11103-013-0058-8
- Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S (2020) Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. Plants-Basel 9 (8). doi:10.3390/plants9080938
- Wang BB, Zhang Y, Zhao J, Dong ML, Zhang JF (2018) Heat-Shock-Induced Removal of Transgenes Using the Gene-Deletor System in Hybrid Aspen (<i>Populus tremula</i> x <i>P</i>. <i>tremuloides</i>). Genes 9 (10). doi:10.3390/genes9100484
- Wang K, Liu HY, Du LP, Ye XG (2017) Generation of marker-free transgenic hexaploid wheat via an <i>Agrobacterium</i>-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal 15 (5):614-623. doi:10.1111/pbi.12660
- Ye XD, Vaghchhipawala Z, Williams EJ, Fu CL, Liu JY, Lu FM, Hall EL, Guo SX, Frank L, Gilbertson LA (2023) Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. Plant Cell Reports 42 (1):45-55.
Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tissue and Organ Culture 107 (2):317-323. doi:10.1007/s11240-011-9982-y
- Alahakoon AY, Tongson E, Meng W, Ye ZW, Russell DA, Chye ML, Golz JF, Taylor PWJ (2022) Overexpressing <i>Arabidopsis thaliana</i> <i>ACBP6</i> in transgenic rapid-cycling <i>Brassica napus</i> confers cold tolerance. Plant Methods 18 (1). doi:10.1186/s13007-022-00886-y
- Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (<i>Brassica napus</i>). Plant Physiology 174 (2):935-942. doi:10.1104/pp.17.00426
- Ding YQ, Zhang DY, Yin GY, Wang WJ (2017) Approaches to improve the transgenic efficiency and to rescue seedlings from hyperhydricity for rapeseed (<i>Brassica napus</i>). European Journal of Horticultural Science 82 (6):306-310. doi:10.17660/eJHS.2017/82.6.5
- Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM (2024) Facilitation of Sclerotinia sclerotiorum infestation by aphid feeding behaviour is not affected by aphid resistance in oilseed rape. Heliyon 10 (11). doi:10.1016/j.heliyon.2024.e32429
- Hao ZP, Sheng L, Feng ZB, Fei WX, Hou SM (2024) Aphids May Facilitate the Spread of Sclerotinia Stem Rot in Oilseed Rape by Carrying and Depositing Ascospores. Journal of Fungi 10 (3). doi:10.3390/jof10030202
- Chu UC, Kumar S, Sigmund A, Johnson K, Li YH, Vongdeuane P, Jones TJ (2020) Genotype-Independent Transformation and Genome Editing of <i>Brassica napus</i> Using a Novel Explant Material. Frontiers in Plant Science 11. doi:10.3389/fpls.2020.579524
- Li ZW, Ma SJ, Song H, Yang Z, Zhao CZ, Taylor D, Zhang M (2021) A <i>3</i>-<i>ketoacyl</i>-<i>CoA synthase</i> 11 (KCS11) homolog from <i>Malania oleifera</i> synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid. Tree Physiology 41 (2):331-342. doi:10.1093/treephys/tpaa125
- Liu F, Wang PD, Xiong XJ, Fu P, Gao HF, Ding XH, Wu G (2020) Comparison of three <i>Agrobacterium</i>-mediated co-transformation methods for generating marker-free transgenic <i>Brassica napus</i> plants. Plant Methods 16 (1). doi:10.1186/s13007-020-00628-y
- Liu XX, Lang SR, Su LQ, Liu X, Wang XF (2015) Improved <i>Agrobacterium</i>-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring <i>Brassica napus</i> 'Precocity' cultivar. Genetics and Molecular Research 14 (4):16840-16855. doi:10.4238/2015.December.14.11
- Narayanan SP, Alahakoon AY, Elliott CE, Russell D, Taylor PWJ, Lo CV, Chye ML (2023) Overexpression of rice acyl-CoA-binding protein OsACBP5 protects Brassica napus against seedling infection by fungal phytopathogens. Crop & Pasture Science 74 (5):459-469. doi:10.1071/cp22347
Moravcikova J, Matusikova I, Libantova J, Bauer M, Mlynarova L (2004) Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tissue and Organ Culture 79 (2):161-168. doi:10.1007/s11240-004-0656-x
- Beliaev DV, Yourieva NO, Tereshonok DV, Derevyagina MK, Meleshin AA (2023) Early Blight Resistance of Transgenic Potato Plants Expressing the<i> ProSmAMP1</i> Gene for Antimicrobial Peptides under the Control of a Light-Inducible<i> Cab</i> Promoter. Russian Journal of Plant Physiology 70 (3). doi:10.1134/s1021443722700042
- Chaudhary S, Lal M, Sagar S, Sharma S, Kumar M (2024) Black scurf of potato: Insights into biology, diagnosis, detection, host-pathogen interaction, and management strategies. Tropical Plant Pathology 49 (2):169-192. doi:10.1007/s40858-023-00622-4
- Chouhan R, Ahmed S, Gandhi SG (2023) Over-expression of PR proteins with chitinase activity in transgenic plants for alleviation of fungal pathogenesis. Journal of Plant Pathology 105 (1):69-81. doi:10.1007/s42161-022-01226-8
- Kahlon JG, Jacobsen HJ, Chatterton S, Hassan F, Bowness R, Hall LM (2018) Lack of efficacy of transgenic pea (<i>Pisum sativum</i> L.) stably expressing antifungal genes against <i>Fusarium spp.</i> in three years of confined field trials. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain 9 (2):90-108. doi:10.1080/21645698.2018.1445471
- Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnology Reports 2 (1):13-20. doi:10.1007/s11816-008-0043-x
- Ma XL, Milne RI, Zhou HX, Fang JY, Zha HG (2017) Floral nectar of the obligate outcrossing <i>Canavalia gladiata</i> (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. Plant Biology 19 (5):749-759. doi:10.1111/plb.12583
- Ng DWK, Chandrasekharan MB, Hall TC (2006) Ordered histone modifications are associated with transcriptional poising and activation of the <i>phaseolin</i> promoter. Plant Cell 18 (1):119-132. doi:10.1105/tpc.105.037010
- Parveen S, Khan A, Jahan N, Aaliya K, Muzaffar A, Tabassum B, Inayatullah S, Moeezullah S, Tariq M, Rehmat Z, Ali N, Hussain A (2023) Expression of Chitinase and shRNA Gene Exhibits Resistance to Fungi and Virus. Genes 14 (5). doi:10.3390/genes14051090
- Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology 28:S298-S308. doi:10.1080/07060660609507387
- Sripriya R, Parameswari C, Veluthambi K (2017) Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (<i>ap</i>24) and rice chitinase (<i>chi</i>11) genes. In Vitro Cellular & Developmental Biology-Plant 53 (1):12-21. doi:10.1007/s11627-017-9807-8
Libantova J, Kamarainen T, Moravcikova J, Matusikova I, Salaj J (2009) Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Molecular Biology Reports 36 (5):851-856. doi:10.1007/s11033-008-9254-z
- Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS (2012) Molecular characterization of stress resistance-related chitinase genes of <i>Brassica rapa</i>. Plant Physiology and Biochemistry 58:106-115. doi:10.1016/j.plaphy.2012.06.015
- Ahmed NU, Park JI, Seo MS, Kumar TS, Lee IH, Park BS, Nou IS (2012) Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Molecular Biology Reports 39 (4):3649-3657. doi:10.1007/s11033-011-1139-x
- Colas S, Afoufa-Bastien D, Jacquens L, Clément C, Baillieul F, Mazeyrat-Gourbeyre F, Monti-Dedieu L (2012) Expression and <i>In Situ</i> Localization of Two Major PR Proteins of Grapevine Berries during Development and after UV-C Exposition. Plos One 7 (8). doi:10.1371/journal.pone.0043681
- Ellison AM, Adamec L (2018) Carnivorous Plants Physiology, ecology, and evolution Preface. Carnivorous Plants: Physiology, Ecology, and Evolution.
- Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI (2013) Two cold-induced family 19 glycosyl hydrolases from cherimoya (<i>Annona cherimola</i>) fruit: An antifungal chitinase and a cold-adapted chitinase. Phytochemistry 95:94-104. doi:10.1016/j.phytochem.2013.07.004
- Chen JJ, Piao YL, Liu YM, Li XN, Piao ZY (2018) Genome-wide identification and expression analysis of chitinase gene family in <i>Brassica rapa</i> reveals its role in clubroot resistance. Plant Science 270:257-267. doi:10.1016/j.plantsci.2018.02.017
- Pavlovic A, Krausko M, Libiaková M, Adamec L (2014) Feeding on prey increases photosynthetic efficiency in the carnivorous sundew <i>Drosera capensis</i>. Annals of Botany 113 (1):69-78. doi:10.1093/aob/mct254
- Renner T, Specht CD (2013) Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current Opinion in Plant Biology 16 (4):436-442. doi:10.1016/j.pbi.2013.06.009
- Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in <i>Saccharum</i> spp. Bmc Plant Biology 20 (1). doi:10.1186/s12870-020-02400-9
- Sueldo DJ, Godson A, Kaschani F, Krahn D, Kessenbrock T, Buscaill P, Schofield CJ, Kaiser M, van der Hoorn RAL (2024) Activity-based proteomics uncovers suppressed hydrolases and a <i>neo</i>-functionalised antibacterial enzyme at the plant-pathogen interface. New Phytologist 241 (1):394-408. doi:10.1111/nph.18857
VEGA 1/0230/24 (2024-2026) - principal investigator
Title: The use of nanopriming to mitigate abiotic stress in plants during their germination.
VEGA 1/0525/20, 2020-2023 - principal investigator
Title: Functional analysis of the role of dehydrin from Quercus robur L. under heavy metal stress.
KEGA 001UCM-4/2022, 2022-2024- principal investogator
Title: Implementation of new scientific knowledge and approaches to the educational process in the field of biotechnology.
VEGA 2/0035/17, 2017-2019 - principal investigator
Title: Studying of the function of dehydrin genes from Arabidopsis thaliana in the tolerance to selected types of abiotic stresses
Interreg V-A SK-AT, 2018 - 2023 - co-investigatorTitle: Identification and authentication of regional fruit production.
VII. - Overview of organizational experience related to higher education and research/artistic/other
activities
VII.a - Activity, position |
VII.b - Name of the institution, board |
VII.c - Duration |
Member of the panel of experts in the Commission for Biological Safety and its panel of experts |
The Ministry of the Environment |
2021-now |
Member of the Scientific Grant Agency of the Ministry of Education, Youth and Sports of the Slovak Republic and SAS (VEGA) no. 8 |
The Ministry of Education, Science, Research and Sport of the Slovak Republic |
2021-now |
|
|
2007, 1 months |
VIII. - Overview of international mobilities and visits oriented on education and research/artistic/other
activities in the given field of study
VIII.a - Name of the institution |
VIII.b - Address of the institution |
VIII.c - Duration (indicate the duration of stay) |
VIII.d - Mobility scheme, employment contract, other (describe) |
The F. Górski Institute of Plant Physiology, Polish Academy of Sciences |
Krakow, Poland |
2018, 1 week |
work in the frame of the project APVV: SK-PL -2015-0044 |
Aarhus University, Department of Genetics and Biotechnology, |
Copenhagen , Denmark |
2007, 1 month |
SAS- bilateral agreement, acquisition of laboratory skill |
Plant Research International, BU Genomics, Wageningen, The Netherlands |
Wageningen, The Netherlands |
2002, 2 months |
work in the frame of INCO-Copernicus project (IC15-CT96-0921) |
Plant Research International, BU Genomics, Wageningen, The Netherlands |
Wageningen, The Netherlands |
2001, 3 months |
work in the frame of INCO-Copernicus project (IC15-CT96-0921) |
Plant Research International, BU Genomics, Wageningen, The Netherlands |
Wageningen, The Netherlands |
1998, 3 months |
work in the frame of INCO-Copernicus project (IC15-CT96-0921) |
The F. Górski Institute of Plant Physiology, Polish Academy of Sciences |
Krakow, Poland |
2024 - 1 week |
Erasmus |
IX. - Other relevant facts
IX.a - If relevant, other activities related to higher education or research/artistic/other
activities are mentioned
- publication outputs in the field of plant biotechnology (H-index 16, 535 citations without self-citations, WOS)
- monitoring the latest scientific and research trends in the field of biotechnology and incorporating them into the pedagogical process
- scientific cooperation with foreign scientific research laboratories
- participation in COST actions as MC member (CA15223, FP 0905)
- experimental skills with analyzes in the molecular-biochemical laboratory at the previous workplace (SAV) and at foreign workplaces as part of study stays
- participation in home and foreign conferences
- writing, managing and solving scientific research projects
- participation in writing scripts and teaching texts
- cooperation with other universities in Slovakia (SPU in Nitra and UKF in Nitra)
Date of last update
2025-02-14