UCM
Vedecko/umelecko-pedagogická charakteristika osoby
Meno:
Doc. Ing. Jana Moravčíková, PhD.
Email:
jana.moravcikova@ucm.sk
Homepage:
http:\\
Fakulta/Univerzita:
FPV UCM - Fakulta prírodných vied UCM
Pracovisko:
UBB - Ústav biológie a biotechnológie

I. - Základné údaje

I.1 - Priezvisko
Moravčíková
I.2 - Meno
Jana
I.3 - Tituly
doc. Ing. PhD
I.4 - Rok narodenia
1965
I.5 - Názov pracoviska
Univerzita sv. Cyrila a Metoda v Trnave, Fakulta prírodných vied, Katedra biotechnológií
I.6 - Adresa pracoviska
Trnava, Nám. J. Herdu 577/ 2, Slovenská republika
I.7 - Pracovné zaradenie
docent
I.8 - E-mailová adresa
jana.moravcikova@ucm.sk
I.9 - Hyperlink na záznam osoby v Registri zamestnancov vysokých škôl
https://www.portalvs.sk/regzam/detail/30492
I.10 - Názov študijného odboru, v ktorom osoba pôsobí na vysokej škole
Biotechnológie
I.11 - ORCID iD
https://orcid.org/0000-0003-2801-8870

II. - Vysokoškolské vzdelanie a ďalší kvalifikačný rast

II.1 - Vysokoškolské vzdelanie prvého stupňa
II.2 - Vysokoškolské vzdelanie druhého stupňa
II.a - Názov vysokej školy alebo inštitúcie
Chemicko-technologická fakulta, Slovenská technická univerzita v Bratislave
II.b - Rok
1988
II.c - Odbor a program
potravinársko-biochemický smer, technológia mlieka a tukov
II.3 - Vysokoškolské vzdelanie tretieho stupňa
II.a - Názov vysokej školy alebo inštitúcie
Univerzita Komenského v Bratislave, Prírodovedecká fakulta
II.b - Rok
2001
II.c - Odbor a program
15-03-09 Genetika
II.4 - Titul docent
II.a - Názov vysokej školy alebo inštitúcie
Slovenská poľnohospodárska univerzita v Nitre, Fakulta biotechnológie a potravinárstva
II.b - Rok
2017
II.c - Odbor a program
Agrobiotechnológie
II.5 - Titul profesor
II.6 - Titul DrSc.

III. - Súčasné a predchádzajúce zamestnania

III.a - Zamestnanie-pracovné zaradenie III.b - Inštitúcia III.c - Časové vymedzenie
VŠ pedagóg, profesor Fakulta prírodných vied, Katedra biotechnológií, UCM v Trnave 2018-trvá
samostatný vedecký pracovník IIa (2007-2018), vedecký pracovník (2001-2007) , doktorandské štúdium (1996-2001) Slovenská akadémia vied, Centrum biológie a biodiverzity rastlín, Ústav genetiky a biotechnológií rastlín 1996-2018
pracovník výstupnej kontroly kvality Agromilk a.s. Nitra 1988-1995

IV. - Rozvoj pedagogických, odborných, jazykových, digitálnych a iných zručností

V. - Prehľad aktivít v rámci pedagogického pôsobenia na vysokej škole

V.1 - Prehľad zabezpečovaných profilových študijných predmetov v aktuálnom akademickom roku podľa študijných programov
V.1.a - Názov profilového predmetu V.1.b - Študijný program V.1.c - Stupeň V.1.d - Študijný odbor
Bilančné systémy v biotechnológiách Biotechnológie Bc Biotechnológie
Základy biotechnologických procesov a zariadení Biotechnológie Bc Biotechnológie
Regulácia a biologická bezpečnosť biotechnológií Biotechnológie Bc Biotechnológie
Základy bioinžinierstva Biotechnológie Mgr. Biotechnológie
Laboratórne cvičenia z in vitro systémov rastlín Biotechnológie Mgr. Biotechnológie
V.2 - Prehľad o zodpovednosti za uskutočňovanie, rozvoj a zabezpečenie kvality študijného programu alebo jeho časti na vysokej škole v aktuálnom akademickom roku
V.2.a - Názov študijného programu V.2.b - Stupeň V.2.c - Študijný odbor
Biotechnológie - člen odborovej komisie III. Biotechnológie
V.3 - Prehľad o zodpovednosti za rozvoj a kvalitu odboru habilitačného konania a inauguračného konania v aktuálnom akademickom roku
V.4 - Prehľad vedených záverečných prác
V.4.1 - Počet aktuálne vedených prác
V.4.a - Bakalárske (prvý stupeň)
2
V.4.b - Diplomové (druhý stupeň)
2
V.4.c - Dizertačné (tretí stupeň)
V.4.2 - Počet obhájených prác
V.4.a - Bakalárske (prvý stupeň)
2
V.4.b - Diplomové (druhý stupeň)
6
V.4.c - Dizertačné (tretí stupeň)
3 školiteľ/4 konzultant
V.5 - Prehľad zabezpečovaných ostatných študijných predmetov podľa študijných programov v aktuálnom akademickom roku
V.5.a - Názov predmetu V.5.b - Študijný program V.5.c - Stupeň V.5.d - Študijný odbor
Materiálové a energetické bilancie v životnom prostredí Ochrana a obnova životného prostredia Mgr. 7. Ekologické a environmentálne vedy
Nanobiotechnológie Biotechnológie Mgr. Biotechnológie
Biotechnológie

VI. - Prehľad výsledkov tvorivej činnosti

VI.1 - Prehľad výstupov tvorivej činnosti a ohlasov na výstupy tvorivej činnosti
VI.1.1 - Počet výstupov tvorivej činnosti
VI.1.a - Celkovo
67
VI.1.b - Za posledných šesť rokov
16
VI.1.2 - Počet výstupov tvorivej činnosti registrovaných v databázach Web of Science alebo Scopus
VI.1.a - Celkovo
67
VI.1.b - Za posledných šesť rokov
16
VI.1.3 - Počet ohlasov na výstupy tvorivej činnosti
VI.1.a - Celkovo
807 (WOS)
VI.1.b - Za posledných šesť rokov
455 (2019-2025) (WOS)
VI.1.4 - Počet ohlasov registrovaných v databázach Web of Science alebo Scopus na výstupy tvorivej činnosti
VI.1.a - Celkovo
807 (WOS)
VI.1.b - Za posledných šesť rokov
455 (WOS)
VI.1.5 - Počet pozvaných prednášok na medzinárodnej a národnej úrovni
VI.1.a - Celkovo
10
VI.1.b - Za posledných šesť rokov
2
VI.2 - Najvýznamnejšie výstupy tvorivej činnosti
Poloniova Z, Jopcik M, Matusikova I, Libantova J, Moravcikova J (2015) The pollen- and embryo-specific Arabidopsis DLL promoter bears good potential for application in marker-free Cre/loxP self-excision strategy. Plant Cell Reports 34 (3):469-481. doi:10.1007/s00299-014-1726-0

Dubas E, Moravcikova J, Libantova J, Matusikova I, Benkova E, Zur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B-napus microspores and microspore-derived embryos. Protoplasma 251 (5):1077-1087. doi:10.1007/s00709-014-0616-1

Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tissue and Organ Culture 107 (2):317-323. doi:10.1007/s11240-011-9982-y

Moravcikova J, Vaculkova E, Bauer M, Libantova J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics 117 (8):1325-1334. doi:10.1007/s00122-008-0866-4

Matusikova I, Salaj J, Moravcikova J, Mlynarova L, Nap JP, Libantova J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222 (6):1020-1027. doi:10.1007/s00425-005-0047-5

VI.3 - Najvýznamnejšie výstupy tvorivej činnosti za ostatných šesť rokov

Boszoradova E, Matusikova I, Libantova J, Zimova M, Moravcikova J (2019) Cre-mediated marker gene removal for production of biosafe commercial oilseed rape. Acta Physiologiae Plantarum 41 (6). doi:10.1007/s11738-019-2865-2

Zielinski K, Dubas E, Gersi Z, Krzewska M, Janas A, Nowicka A, Matusikova I, Zur I, Sakuda S, Moravcikova J (2021) beta-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Science 302. doi:10.1016/j.plantsci.2020.110700

Zielinski K, Krzewska M, Zur I, Juzon K, Kopec P, Nowicka A, Moravcikova J, Skrzypek E, Dubas E (2020) The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tissue and Organ Culture 140 (3):577-592. doi:10.1007/s11240-019-01754-9

Fischerová, L., Gemperlová, L., Cvikrová, M., Matušíková, I., Moravčíková, J., Gerši, Z., Malbeck, J., Kuderna, J., Pavlíčková, J., Motyka, V. and Eliášová, K., 2022. The humidity level matters during the desiccation of Norway spruce somatic embryos. Frontiers in Plant Science, 13, p.968982.

Švecová, M., Boszorádová, E., Matušíková, I., Gerši, Z., Nemeček, P., Bardáčová, M., Ranušová, P., Karas, M. and Moravčíková, J., 2023. Arabidopsis AtLTI30 and AtHIRD11 dehydrin genes and their contribution to cadmium tolerance in transgenic tobacco plants. Acta Physiologiae Plantarum, 45(2), p.21.

Mihalik, D., Lančaričová, A., Mrkvova, M., Kaňuková, Š., Moravčíková, J., Glasa, M., Šubr, Z., Predajňa, L., Hančinský, R., Grešíková, S. and Havrlentova, M., 2020. Diacylglycerol acetyltransferase gene isolated from Euonymus europaeus L. altered lipid metabolism in transgenic plant towards the production of acetylated triacylglycerols. Life, 10(9), p.205.

Gálusová, T., Piršelová, B., Rybanský, Ľ., Krasylenko, Y., Mészáros, P., Blehová, A., Bardáčová, M., Moravčíková, J. and Matušíková, I., 2020. Plasticity of soybean stomatal responses to arsenic and cadmium at the whole plant level. Pol. J. Environ. Stud, 29, pp.3569-3580.

Maglovski, M., Gerši, Z., Rybanský, Ľ., Bardáčová, M., Moravčíková, J., Bujdoš, M., Dobrikova, A., Apostolova, E., Kraic, J., Blehová, A. and Matušíková, I., 2019. Effects of nutrition on wheat photosynthetic pigment responses to arsenic stress. Polish Journal of Environmental Studies, 28(3), pp.1821-1829.

Durechova, D., Jopcik, M., Rajninec, M., Moravcikova, J. and Libantova, J., 2019. Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their antifungal potential. Molecular Biotechnology, 61, pp.916-928.

Karas, M, Vešelényiová, D., Boszorádová, E, Nemeček, P, Gerši, Z, Moravčíková, J (2024). Comparative Analysis of Dehydrins from Woody Plant Species. In Biomolecules : Open Access Journal, 2024, vol. 14, no. 3, art. no. 250.

VI.4 - Najvýznamnejšie ohlasy na výstupy tvorivej činnosti

Matusikova I, Salaj J, Moravcikova J, Mlynarova L, Nap JP, Libantova J (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifoliaL.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222 (6):1020-1027. doi:10.1007/s11033-010-0453-z

  1. Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T (2021) Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (<i>Drosera adelae</i>). Journal of Experimental Botany 72 (5):1946-1961. doi:10.1093/jxb/eraa560
  2. Egan PA, van der Kooy F (2013) Phytochemistry of the Carnivorous Sundew Genus Drosera (Droseraceae) - Future Perspectives and Ethnopharmacological Relevance. Chemistry & Biodiversity 10 (10):1774-1790. doi:10.1002/cbdv.201200359
  3. Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant <i>Nepenthes khasiana</i>. Journal of Experimental Botany 57 (11):2775-2784. doi:10.1093/jxb/erl048
  4. Ellison AM, Adamec L (2018) Carnivorous Plants Physiology, ecology, and evolution Preface. Carnivorous Plants: Physiology, Ecology, and Evolution.
  5. Fukushima K, Fang XD, Alvarez-Ponce D, Cai HM, Carretero-Paulet L, Chen C, Chang TH, Farr KM, Fujita T, Hiwatashi Y, Hoshi Y, Imai T, Kasahara M, Librado P, Mao LK, Mori H, Nishiyama T, Nozawa M, Pálfalvi G, Pollard ST, Rozas J, Sánchez-Gracia A, Sankoff D, Shibata TF, Shigenobu S, Sumikawa N, Uzawa T, Xie MY, Zheng CF, Pollock DD, Albert VA, Li SC, Hasebe M (2017) Genome of the pitcher plant <i>Cephalotus</i> reveals genetic changes associated with carnivory. Nature Ecology & Evolution 1 (3). doi:10.1038/s41559-016-0059
  6. Goh HH, Baharin A, Salleh FIM, Ravee R, Zakaria W, Noor NM (2020) Transcriptome-wide shift from photosynthesis and energy metabolism upon endogenous fluid protein depletion in young <i>Nepenthes ampullaria</i> pitchers. Scientific Reports 10 (1). doi:10.1038/s41598-020-63696-z
  7. Holubová L, Svubová R, Slováková L, Bokor B, Krocková VC, Rencko J, Uhrin F, Medvecká V, Zahoranová A, Gálová E (2021) Cold Atmospheric Pressure Plasma Treatment of Maize Grains-Induction of Growth, Enzyme Activities and Heat Shock Proteins. International Journal of Molecular Sciences 22 (16). doi:10.3390/ijms22168509
  8. Kocáb O, Jaksová J, Novák O, Petrík I, Lenobel R, Chamrád I, Pavlovic A (2020) Jasmonate-independent regulation of digestive enzyme activity in the carnivorous butterwort <i>Pinguicula</i> x <i>Tina</i>. Journal of Experimental Botany 71 (12):3749-3758. doi:10.1093/jxb/eraa159
  9. Kostoláni D, Yemeli GBN, Svubová R, Kyzek S, Machala Z (2021) Physiological Responses of Young Pea and Barley Seedlings to Plasma-Activated Water. Plants-Basel 10 (8). doi:10.3390/plants10081750
  10. Krausko M, Perutka Z, Sebela M, Samajová O, Samaj J, Novák O, Pavlovic A (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant <i>Drosera capensis</i>. New Phytologist 213 (4):1818-1835. doi:10.1111/nph.14352

Moravcikova J, Vaculkova E, Bauer M, Libantova J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theoretical and Applied Genetics 117 (8):1325-1334. doi:10.1007/s00122-008-0866-4

  1. Dalla Costa L, Piazza S, Campa M, Flachowsky H, Hanke MV, Malnoy M (2016) Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tissue and Organ Culture 124 (3):471-481. doi:10.1007/s11240-015-0907-z
  2. Éva C, Teglás F, Zelenyánszki H, Tamás C, Juhász A, Meszáros K, Tamás L (2018) Cold inducible promoter driven Cre-<i>lox</i> system proved to be highly efficient for marker gene excision in transgenic barley. Journal of Biotechnology 265:15-24. doi:10.1016/j.jbiotec.2017.10.016
  3. Fei XW, Huang XD, Li ZJ, Li XH, He CH, Xiao S, Li YJ, Zhang XX, Deng XD (2023) Effect of marker-free transgenic <i>Chlamydomonas </i>on the control of <i>Aedes</i> mosquito population and on plankton. Parasites & Vectors 16 (1). doi:10.1186/s13071-022-05647-3
  4. Hoenicka H, Lehnhardt D, Nunna S, Reinhardt R, Jeltsch A, Briones V, Fladung M (2016) Level of tissue differentiation influences the activation of a heat-inducible flower-specific system for genetic containment in poplar (<i>Populus tremula</i> L.). Plant Cell Reports 35 (2):369-384. doi:10.1007/s00299-015-1890-x
  5. Chen MY, Zhao FL, Chu WL, Bai MR, Zhang DM (2023) A review of tamoxifen administration regimen optimization for Cre/loxp system in mouse bone study. Biomedicine & Pharmacotherapy 165. doi:10.1016/j.biopha.2023.115045
  6. Chong-Pérez B, Reyes M, Rojas L, Ocaña B, Ramos A, Kosky RG, Angenon G (2013) Excision of a selectable marker gene in transgenic banana using a Cre/<i>lox</i> system controlled by an embryo specific promoter. Plant Molecular Biology 83 (1-2):143-152. doi:10.1007/s11103-013-0058-8
  7. Poles L, Licciardello C, Distefano G, Nicolosi E, Gentile A, La Malfa S (2020) Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. Plants-Basel 9 (8). doi:10.3390/plants9080938
  8. Wang BB, Zhang Y, Zhao J, Dong ML, Zhang JF (2018) Heat-Shock-Induced Removal of Transgenes Using the Gene-Deletor System in Hybrid Aspen (<i>Populus tremula</i> x <i>P</i>. <i>tremuloides</i>). Genes 9 (10). doi:10.3390/genes9100484
  9. Wang K, Liu HY, Du LP, Ye XG (2017) Generation of marker-free transgenic hexaploid wheat via an <i>Agrobacterium</i>-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal 15 (5):614-623. doi:10.1111/pbi.12660
  10. Ye XD, Vaghchhipawala Z, Williams EJ, Fu CL, Liu JY, Lu FM, Hall EL, Guo SX, Frank L, Gilbertson LA (2023) Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. Plant Cell Reports 42 (1):45-55.

Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tissue and Organ Culture 107 (2):317-323. doi:10.1007/s11240-011-9982-y

  1. Alahakoon AY, Tongson E, Meng W, Ye ZW, Russell DA, Chye ML, Golz JF, Taylor PWJ (2022) Overexpressing <i>Arabidopsis thaliana</i> <i>ACBP6</i> in transgenic rapid-cycling <i>Brassica napus</i> confers cold tolerance. Plant Methods 18 (1). doi:10.1186/s13007-022-00886-y
  2. Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape (<i>Brassica napus</i>). Plant Physiology 174 (2):935-942. doi:10.1104/pp.17.00426
  3. Ding YQ, Zhang DY, Yin GY, Wang WJ (2017) Approaches to improve the transgenic efficiency and to rescue seedlings from hyperhydricity for rapeseed (<i>Brassica napus</i>). European Journal of Horticultural Science 82 (6):306-310. doi:10.17660/eJHS.2017/82.6.5
  4. Hao ZP, Feng ZB, Sheng L, Fei WX, Hou SM (2024) Facilitation of Sclerotinia sclerotiorum infestation by aphid feeding behaviour is not affected by aphid resistance in oilseed rape. Heliyon 10 (11). doi:10.1016/j.heliyon.2024.e32429
  5. Hao ZP, Sheng L, Feng ZB, Fei WX, Hou SM (2024) Aphids May Facilitate the Spread of Sclerotinia Stem Rot in Oilseed Rape by Carrying and Depositing Ascospores. Journal of Fungi 10 (3). doi:10.3390/jof10030202
  6. Chu UC, Kumar S, Sigmund A, Johnson K, Li YH, Vongdeuane P, Jones TJ (2020) Genotype-Independent Transformation and Genome Editing of <i>Brassica napus</i> Using a Novel Explant Material. Frontiers in Plant Science 11. doi:10.3389/fpls.2020.579524
  7. Li ZW, Ma SJ, Song H, Yang Z, Zhao CZ, Taylor D, Zhang M (2021) A <i>3</i>-<i>ketoacyl</i>-<i>CoA synthase</i> 11 (KCS11) homolog from <i>Malania oleifera</i> synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid. Tree Physiology 41 (2):331-342. doi:10.1093/treephys/tpaa125
  8. Liu F, Wang PD, Xiong XJ, Fu P, Gao HF, Ding XH, Wu G (2020) Comparison of three <i>Agrobacterium</i>-mediated co-transformation methods for generating marker-free transgenic <i>Brassica napus</i> plants. Plant Methods 16 (1). doi:10.1186/s13007-020-00628-y
  9. Liu XX, Lang SR, Su LQ, Liu X, Wang XF (2015) Improved <i>Agrobacterium</i>-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring <i>Brassica napus</i> 'Precocity' cultivar. Genetics and Molecular Research 14 (4):16840-16855. doi:10.4238/2015.December.14.11
  10. Narayanan SP, Alahakoon AY, Elliott CE, Russell D, Taylor PWJ, Lo CV, Chye ML (2023) Overexpression of rice acyl-CoA-binding protein OsACBP5 protects Brassica napus against seedling infection by fungal phytopathogens. Crop & Pasture Science 74 (5):459-469. doi:10.1071/cp22347

Moravcikova J, Matusikova I, Libantova J, Bauer M, Mlynarova L (2004) Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tissue and Organ Culture 79 (2):161-168. doi:10.1007/s11240-004-0656-x

  1. Beliaev DV, Yourieva NO, Tereshonok DV, Derevyagina MK, Meleshin AA (2023) Early Blight Resistance of Transgenic Potato Plants Expressing the<i> ProSmAMP1</i> Gene for Antimicrobial Peptides under the Control of a Light-Inducible<i> Cab</i> Promoter. Russian Journal of Plant Physiology 70 (3). doi:10.1134/s1021443722700042
  2. Chaudhary S, Lal M, Sagar S, Sharma S, Kumar M (2024) Black scurf of potato: Insights into biology, diagnosis, detection, host-pathogen interaction, and management strategies. Tropical Plant Pathology 49 (2):169-192. doi:10.1007/s40858-023-00622-4
  3. Chouhan R, Ahmed S, Gandhi SG (2023) Over-expression of PR proteins with chitinase activity in transgenic plants for alleviation of fungal pathogenesis. Journal of Plant Pathology 105 (1):69-81. doi:10.1007/s42161-022-01226-8
  4. Kahlon JG, Jacobsen HJ, Chatterton S, Hassan F, Bowness R, Hall LM (2018) Lack of efficacy of transgenic pea (<i>Pisum sativum</i> L.) stably expressing antifungal genes against <i>Fusarium spp.</i> in three years of confined field trials. Gm Crops & Food-Biotechnology in Agriculture and the Food Chain 9 (2):90-108. doi:10.1080/21645698.2018.1445471
  5. Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnology Reports 2 (1):13-20. doi:10.1007/s11816-008-0043-x
  6. Ma XL, Milne RI, Zhou HX, Fang JY, Zha HG (2017) Floral nectar of the obligate outcrossing <i>Canavalia gladiata</i> (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. Plant Biology 19 (5):749-759. doi:10.1111/plb.12583
  7. Ng DWK, Chandrasekharan MB, Hall TC (2006) Ordered histone modifications are associated with transcriptional poising and activation of the <i>phaseolin</i> promoter. Plant Cell 18 (1):119-132. doi:10.1105/tpc.105.037010
  8. Parveen S, Khan A, Jahan N, Aaliya K, Muzaffar A, Tabassum B, Inayatullah S, Moeezullah S, Tariq M, Rehmat Z, Ali N, Hussain A (2023) Expression of Chitinase and shRNA Gene Exhibits Resistance to Fungi and Virus. Genes 14 (5). doi:10.3390/genes14051090
  9. Punja ZK (2006) Recent developments toward achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology 28:S298-S308. doi:10.1080/07060660609507387
  10. Sripriya R, Parameswari C, Veluthambi K (2017) Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (<i>ap</i>24) and rice chitinase (<i>chi</i>11) genes. In Vitro Cellular & Developmental Biology-Plant 53 (1):12-21. doi:10.1007/s11627-017-9807-8

Libantova J, Kamarainen T, Moravcikova J, Matusikova I, Salaj J (2009) Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Molecular Biology Reports 36 (5):851-856. doi:10.1007/s11033-008-9254-z

  1. Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS (2012) Molecular characterization of stress resistance-related chitinase genes of <i>Brassica rapa</i>. Plant Physiology and Biochemistry 58:106-115. doi:10.1016/j.plaphy.2012.06.015
  2. Ahmed NU, Park JI, Seo MS, Kumar TS, Lee IH, Park BS, Nou IS (2012) Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Molecular Biology Reports 39 (4):3649-3657. doi:10.1007/s11033-011-1139-x
  3. Colas S, Afoufa-Bastien D, Jacquens L, Clément C, Baillieul F, Mazeyrat-Gourbeyre F, Monti-Dedieu L (2012) Expression and <i>In Situ</i> Localization of Two Major PR Proteins of Grapevine Berries during Development and after UV-C Exposition. Plos One 7 (8). doi:10.1371/journal.pone.0043681
  4. Ellison AM, Adamec L (2018) Carnivorous Plants Physiology, ecology, and evolution Preface. Carnivorous Plants: Physiology, Ecology, and Evolution.
  5. Goñi O, Sanchez-Ballesta MT, Merodio C, Escribano MI (2013) Two cold-induced family 19 glycosyl hydrolases from cherimoya (<i>Annona cherimola</i>) fruit: An antifungal chitinase and a cold-adapted chitinase. Phytochemistry 95:94-104. doi:10.1016/j.phytochem.2013.07.004
  6. Chen JJ, Piao YL, Liu YM, Li XN, Piao ZY (2018) Genome-wide identification and expression analysis of chitinase gene family in <i>Brassica rapa</i> reveals its role in clubroot resistance. Plant Science 270:257-267. doi:10.1016/j.plantsci.2018.02.017
  7. Pavlovic A, Krausko M, Libiaková M, Adamec L (2014) Feeding on prey increases photosynthetic efficiency in the carnivorous sundew <i>Drosera capensis</i>. Annals of Botany 113 (1):69-78. doi:10.1093/aob/mct254
  8. Renner T, Specht CD (2013) Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Current Opinion in Plant Biology 16 (4):436-442. doi:10.1016/j.pbi.2013.06.009
  9. Singh RK, Singh P, Li HB, Song QQ, Guo DJ, Solanki MK, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in <i>Saccharum</i> spp. Bmc Plant Biology 20 (1). doi:10.1186/s12870-020-02400-9
  10. Sueldo DJ, Godson A, Kaschani F, Krahn D, Kessenbrock T, Buscaill P, Schofield CJ, Kaiser M, van der Hoorn RAL (2024) Activity-based proteomics uncovers suppressed hydrolases and a <i>neo</i>-functionalised antibacterial enzyme at the plant-pathogen interface. New Phytologist 241 (1):394-408. doi:10.1111/nph.18857
VI.5 - Účasť na riešení (vedení) najvýznamnejších vedeckých projektov alebo umeleckých projektov za posledných šesť rokov

VEGA 1/0230/24 (2024-2026) - zodpovedný riešiteľ

Názov projektu: Využitie nanoprimingu na zmierňovanie stresu u rastlín počas klíčenia (The use of nanopriming to mitigate abiotic stress in plants during their germination)

VEGA 1/0525/20, 2020-2023 - zodpovedný riešiteľ

Názov projektu: Funkčná analýza úlohy dehydrínu z Quercus robur L. pri strese na ťažké kovy (Functional analysis of the role of dehydrin from Quercus robur L. under heavy metal stress)

KEGA 001UCM-4/2022, 2022-2024- zodpovedný riešiteľ

Názov projektu: Implementácia nových vedeckých poznatkov a prístupov do edukačného procesu v oblasti biotechnológií (Implementation of new scientific knowledge and approaches to the educational process in the field of biotechnology)

VEGA 2/0035/17, 2017-2019 - zodpovedný riešiteľ

Názov projektu: Štúdium funkcie génov dehydrínov z Arabidopsis thaliana pri tolerancii voči vybraným typom abiotického stresu (Studying of the function of dehydrin genes from Arabidopsis thaliana in the tolerance to selected types of abiotic stresses)

Interreg V-A SK-AT, 2018 - 2023 - spoluriešiteľNázov projektu: Identifikácia a autentifikácia regionálnej produkcie ovocia.

VII. - Prehľad aktivít v organizovaní vysokoškolského vzdelávania a tvorivých činností

VII.a - Aktivita, funkcia VII.b - Názov inštitúcie, grémia VII.c - Časové vymedzenia pôsobenia
Člen zboru expertov v Komisii pre biologickú bezpečnosť a jej zbore expertov Ministerstvo životného prostredia 2021-doteraz
Člen Vedeckej grantovej agentúry MŠVVaŠ SR a SAV (VEGA) č. 8 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky 2021-doteraz
Člen Vedeckej grantovej agentúry MŠVVaŠ SR a SAV (VEGA) č. 8 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky 2016-2018

VIII. - Prehľad zahraničných mobilít a pôsobenia so zameraním na vzdelávanie a tvorivú činnosť v študijnom odbore

VIII.a - Názov inštitúcie VIII.b - Sídlo inštitúcie VIII.c - Obdobie trvania pôsobenia/pobytu (uviesť dátum odkedy dokedy trval pobyt) VIII.d - Mobilitná schéma, pracovný kontrakt, iné (popísať)
Aarhus University, Department of Genetics and Biotechnology, Kodaň, Dánsko 2007- 1 mesiac Štúdijný pobyt v rámci schémy medzikademická dohoda SAV -Aarhus University
Plant Research International, BU Genomics Wageningen, Holandsko 2002 -2 mesiace štúdijný pobyt v rámci riešenia projektu partnerskej organizácie
Plant Research International, BU Genomics Wageningen, Holandsko 2001 - 3 mesiace štúdijný pobyt v rámci schémy UNESCO fellowship
Plant Research International, BU Genomics Wageningen, Holandsko 1998- 3 mesiace štúdijný pobyt v rámci riešenia spoločného projektu INCO-COPERNICUS
Agricultural Biotechnology Center Gödölö, Maďarsko 1998 -1 mesiac štúdijný pobyt v rámci riešenia spoločného projektu INCO-COPERNICUS
The F. Górski Institute of Plant Physiology, Polish Academy of Sciences Krakow, Poland 2024 -1 týždeň Erasmus

IX. - Iné relevantné skutočnosti

IX.a - Ak je to podstatné, uvádzajú sa iné aktivity súvisiace s vysokoškolským vzdelávaním alebo s tvorivou činnosťou

- publikačné výstupy v oblasti rastlinných biotechnológií

- sledovanie najnovších vedecko-výskumných trendov v oblasti biotechnológií a ich zapracovanie do pedagogického procesu

- vedecká spolupráca so zahraničnými vedecko-výskumnými laboratóriami

- zapojenie sa do akcií COST ako MC member (CA15223, FP 0905, FA1006)

- experimentálne zručnosti s analýzami v molekulárno-biochemickom laboratóriu na predchádzajúcom pracovisku (SAV) a na zahraničných pracoviskách v rámci štúdijných pobytov

- účasť na domácich a zahraničných konferenciách

- písanie, vedenie a riešenie vedecko-výskumných projektov

- podieľanie sa na písaní skrípt a učebných textov

- spolupráca s inými univerzitami na Slovensku (SPU v Nitre a UKF v Nitre)

Dátum poslednej aktualizácie
2025-02-14